Введение в объектно-ориентированные базы данных

Содержание:

История создания

Базы данных (БД) представляют собой логически структурированные системы для электронного администрирования, которое производится с помощью системы управления базами данных (СУБД), добавив ее в репозиторий. Большинство БД можно открывать, редактировать и консультировать только с использованием конкретных приложений. По этим принципам выполняют классификацию БД. В 1960-х годах концепция электронной информационной базы стала разрабатываться как отдельный слой программного обеспечения между ОС и прикладной программой.

Идея системы электронных БД стала одним из наиболее актуальных нововведений в компьютерных разработках. Первыми моделями, которые были разработаны, были иерархические и сетевые базы данных. IBM в семидесятых произвела революцию в этом секторе, с разработкой модели реляционных БД. Наиболее успешными продуктами в то время были язык запросов БД Oracle SQL и преемники IBM, SQL/DS и DB2.

Статичность — основание динамики знания

Классификация по модели данных — это статика. Для построения любой модели специалисты обобщают накопленный потенциал, рисуют картинки, связи между данными и определяют (пример, предметная область — обработка текста):

  • текст — это абзац или много абзацев;
  • всякий абзац построен из предложений;
  • не всякий абзац имеет одно предложение;
  • любое предложение может содержать несколько фраз или слов;
  • почти все фразы состоят из слов;
  • слова — это буквы.

Получается, что структура базы данных и спектр, заложенный изначально, противоречивы. Такая модель формальная, она зависима от области применения, всегда является предметом для развития представлений. Но как только картинки нарисованы, а связи построены, выясняется, что слова могут содержать цифры, быть аббревиатурой, названием страны и словом, которое вовсе не имеет значения, а иной абзац может содержать ссылку на веб-ресурс или троеточие. В любом случае, это будет новый смысл.

Примечания

«Следует отметить, что термин база данных часто используется даже тогда, когда на самом деле подразумевается СУБД. Такое обращение с терминами предосудительно». — К. Дж. Дейт. Введение в системы баз данных. — 8-е изд. — М.: «Вильямс», 2006, стр. 50.«Этот термин (база данных) часто ошибочно используется вместо термина ‘система управления базами данных’». — Когаловский М. Р. Энциклопедия технологий баз данных. — М.: Финансы и статистика, 2002., стр. 460.«Среди непрофессионалов путаница возникает при использовании терминов „база данных“ и „система управления базами данных“. Мы будем строго разделять эти термины». —
Кузнецов С. Д. Основы баз данных: учебное пособие. — 2-е издание, испр. — М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2007, стр. 19.

↑ ГОСТ Р ИСО МЭК ТО 10032-2007: Эталонная модель управления данными (идентичен ISO/IEC TR 10032:2003 Information technology — Reference model of data management)

ГОСТ 33707-2016 (ISO/IEC 2382:2015) Информационные технологии (ИТ)

Словарь

↑ .

.

.

Важно понимать, что структурированность базы данных оценивается не на уровне физического хранения (на котором все данные представлены совокупностями битов или байтов), а на уровне некоторой логической модели данных.

Riedewald M., Agrawal D., Abbadi A. Dynamic Multidimensional Data Cubes for Interactive Analysis of Massive Datasets // In: Encyclopedia of Information Science and Technology, First Edition, Idea Group Inc., 2005

ISBN 9781591405535

Современная СУБД состоит из:

  • ядра — части программ СУБД, отвечающих за управление данными в памяти и журнализацию
  • Процессора языка базы данных, обеспечивающего оптимизацию запросов на извлечение и изменение данных, и создание БД
  • Подсистемы поддержки времени исполнения, интерпретирующую программы манипуляции данными, которые создают интерфейс пользователя СУБД
  • Сервисных программ (внешних утилит), которые обеспечивают прочие возможности по обслуживанию информационных систем.

Так как через СУБД осуществляют все процессы, применимые к базам данных, следовательно, лучше будет выделить только её основные возможности.

Что такое база данных

Основой для многих информационных систем (прежде всего, информационно-справочных систем) являются базы данных.

База данных (БД) — это совокупность специальным образом организованных данных, хранимых в памяти вычислительной системы и отражающих состояние и взаимодействие объектов в определенной предметной области.

Под вычислительной системой здесь понимается отдельный компьютер или компьютерная сеть. В первом случае база данных называется централизованной, во втором случае — распределенной.

База данных является компьютерной информационной моделью некоторой реальной системы. Например, книжного фонда библиотеки, кадрового состава предприятия, учебного процесса в школе и т. д. Такую систему называют предметной областью базы данных и информационной системы, в которую БД входит.

Описание структуры данных, хранимых в БД, называется моделью представления данных, или моделью данных. В теории БД известны три классические модели данных: иерархическая, сетевая и реляционная (табличная). По виду используемой модели данных базы данных делятся на иерархические, сетевые и реляционные (табличные).

В последние годы при разработке информационных систем стали использоваться и другие виды моделей данных. К ним относятся объектно-ориентированные, объектно-реляционные, многомерные и другие модели. Классическим вариантом, и пока наиболее распространенным, остается реляционная модель. В курсе информатики основной школы вы уже знакомились с основами реляционных БД. Вспомним главные понятия, связанные с ними.

Сверхбольшие базы данных

Сверхбольшая база данных (англ. Very Large Database, VLDB) — это база данных, которая занимает чрезвычайно большой объём на устройстве физического хранения. Термин подразумевает максимально возможные объёмы БД, которые определяются последними достижениями в технологиях физического хранения данных и в технологиях программного оперирования данными.

Количественное определение понятия «чрезвычайно большой объём» меняется во времени. Так, в 1997 году самой большой в мире была текстовая база данных Knight Ridder’s DIALOG объёмом 7 терабайт. В 2001 году самой большой считалась база данных объёмом 10,5 терабайт, в 2003 году — объёмом 25 терабайт. В 2005 году самыми крупными в мире считались базы данных с объёмом хранилища порядка сотни терабайт. В 2006 году поисковая машина Google использовала базу данных объёмом 850 терабайт.

К 2010 году считалось, что объём сверхбольшой базы данных должен измеряться по меньшей мере петабайтами.

В 2011 году компания хранила данные в кластере из 2 тыс. узлов суммарной ёмкостью 21 петабайт; к концу 2012 года объём данных Facebook достиг 100 петабайт, а в 2014 году — 300 петабайт.

К 2014 году по косвенным оценкам компания хранила на своих серверах до 10—15 эксабайт данных в совокупности.

По некоторым оценкам, к 2025 году генетики будут располагать данными о геномах от 100 миллионов до 2 миллиардов человек, и для хранения подобного объёма данных потребуется от 2 до 40 эксабайт.

В целом, по оценкам компании IDC, суммарный объём данных «цифровой вселенной» удваивается каждые два года и изменится от 4,4 зеттабайта в 2013 году до 44 зеттабайт в 2020 году.

Исследования в области хранения и обработки сверхбольших баз данных VLDB всегда находятся на острие теории и практики баз данных. В частности, с 1975 года проходит ежегодная конференция International Conference on Very Large Data Bases («Международная конференция по сверхбольшим базам данных»). Большинство исследований проводится под эгидой некоммерческой организации VLDB Endowment (Фонд целевого капитала «VLDB»), которая обеспечивает продвижение научных работ и обмен информацией в области сверхбольших БД и смежных областях.

Литература

  • Когаловский М. Р. Энциклопедия технологий баз данных. — М.: Финансы и статистика, 2002. — 800 с. — ISBN 5-279-02276-4.
  • Кузнецов С. Д. Основы баз данных. — 2-е изд. — М.: Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2007. — 484 с. — ISBN 978-5-94774-736-2.
  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. — 8-е изд. — М.: Вильямс, 2005. — 1328 с. — ISBN 5-8459-0788-8 (рус.) 0-321-19784-4 (англ.).
  • Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и практика = Database Systems: A Practical Approach to Design, Implementation, and Management. — 3-е изд. — М.: Вильямс, 2003. — 1436 с. — ISBN 0-201-70857-4.
  • Гарсиа-Молина Г., Ульман Дж., Уидом Дж. Системы баз данных. Полный курс = Database Systems: The Complete Book. — Вильямс, 2003. — 1088 с. — ISBN 5-8459-0384-X.
  • Date, C. J. Date on Database: Writings 2000–2006. — Apress, 2006. — 566 с. — ISBN 978-1-59059-746-0, 1-59059-746-X.
  • Date, C. J. Database in Depth. — O’Reilly, 2005. — 240 с. — ISBN 0-596-10012-4.
  • Beynon-Davies P. (2004). Database Systems 3rd Edition. Palgrave, Basingstoke, UK. ISBN 1-4039-1601-2

Реляционные базы данных SQL

Если вы когда-либо работали с базами данных, скорее всего, вы начали с этого типа, потому что он самый популярный и распространенный. Такие БД позволяют хранить данные в реляционных таблицах с определенными столбцами определенного типа. Реляционные таблицы хороши для нормализации и объединения.

Достоинства:

  • Поддержка SQL
  • ACID-транзакции (атомарность, согласованность, изоляция и долговечность)
  • Поддержка индексации и разделения

Недостатки:

  • Плохая поддержка неструктурированных данных / сложных типов
  • Плохая оптимизация обработки событий
  • Сложное / дорогое масштабирование

Примеры: Oracle DB, MySQL, PostgreSQL.

Настоящее и будущее

Если упрощённо, то реляционный подход описывает данные в формате таблиц, то есть вся информация неразрывно связана отношениями и структурой (вспомните Excel со столбцами и строками, где каждый новый объект записывается по тому же шаблону). Это неизбежно приводит к ограничениям по производительности и масштабированию, но с точки зрения создания и управления – это просто и удобно.

NoSQL подход позволяет избежать этих проблем за счёт отсутствия строгих информационных связей. Но тут возникает другая проблема – организация доступа. Решается она 4 основными способами: с помощью документной ориентации, расширяемых записей (разреженных матриц), ключей доступа и теории графов. Естественно, что подход NoSQL требует от разработчика больше знаний и умений, но результаты куда эффективнее. Именно поэтому считается, что SQL уже сейчас уходит в историю, а NoSQL – будущее всех БД.

Впрочем, данное предсказание упирается в тот факт, что использование реляционного подхода для небольших баз куда эффективнее. Поэтому вместо бессмысленного спора поговорим о более практических вещах, а именно непосредственно о наиболее популярных БД.

Пример: слежение за почтовыми отправлениями

Реализация — это сетевая база данных. Но не просто база или система, а разные страны и компании, которые предоставляют услугу, накапливают и обрабатывают информацию.

Это иерархическая база данных на уровне отдельно взятой компании, причем в каждой реализации будет подобная иерархия отношений. Внутри страны есть своя сетевая инфраструктура.

В каждом конкретном применении, когда посетитель веб-ресурса ищет почтовое отправление, срабатывает вся сетевая база данных, которая не была спроектирована как единое целое, но образовалась «сама по себе» вследствие области применения.

Фактор множественности реализаций и вполне конкретный запрос с ответом на него. Подобие по составляющим элементам и функциональности, а также существуют только конкретные способы предоставления почтового отправления для отправки. Есть идентичные по странам способы доставки и пересечения таможни. Результатом становится структура базы данных на местах. Это обуславливает доступность и возможность реализации «автоматического» механизма обмена данными. Но линии связи не всегда работают корректно. Сервера могут становиться и на техобслуживание.

Виды баз данных

Существует огромное количество разновидностей баз данных, отличающихся по различным критериям. Например, в «Энциклопедии технологий баз данных», по материалам которой написан данный раздел, определяются свыше 50 видов БД.

Основные классификации приведены ниже.

Классификация по модели данных

Примеры:

  • Иерархическая
  • Объектная и объектно-ориентированная
  • Объектно-реляционная
  • Реляционная
  • Сетевая
  • Функциональная.

Классификация по среде постоянного хранения

  • Во вторичной памяти, или традиционная (англ. conventional database): средой постоянного хранения является периферийная энергонезависимая память (вторичная память) — как правило жёсткий диск.В оперативную память СУБД помещает лишь кэш и данные для текущей обработки.
  • В оперативной памяти (англ. in-memory database, memory-resident database, main memory database): все данные на стадии исполнения находятся в оперативной памяти.
  • В третичной памяти (англ. tertiary database): средой постоянного хранения является отсоединяемое от сервера устройство массового хранения (третичная память), как правило на основе магнитных лент или оптических дисков.Во вторичной памяти сервера хранится лишь каталог данных третичной памяти, файловый кэш и данные для текущей обработки; загрузка же самих данных требует специальной процедуры.

Примеры:

  • Географическая
  • Историческая
  • Научная
  • Мультимедийная
  • Клиентская.

Классификация по степени распределённости

  • Централизованная, или сосредоточенная (англ. centralized database): БД, полностью поддерживаемая на одном компьютере.
  • Распределённая БД (англ. distributed database) — составные части которой размещаются в различных узлах компьютерной сети в соответствии с каким-либо критерием.

    • Неоднородная (англ. heterogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами более одной СУБД.
    • Однородная (англ. homogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами одной и той же СУБД.
    • Фрагментированная, или секционированная (англ. partitioned database): методом распределения данных является фрагментирование (партиционирование, секционирование), вертикальное или горизонтальное.
    • Тиражированная (англ. replicated database): методом распределения данных является тиражирование (репликация).

Другие виды БД

  • Пространственная (англ. spatial database): БД, в которой поддерживаются пространственные свойства сущностей предметной области. Такие БД широко используются в геоинформационных системах.
  • Временная, или темпоральная (англ. temporal database): БД, в которой поддерживается какой-либо аспект времени, не считая времени, определяемого пользователем.
  • Пространственно-временная (англ. spatial-temporal database) БД: БД, в которой одновременно поддерживается одно или более измерений в аспектах как пространства, так и времени.
  • Циклическая (англ. round-robin database): БД, объём хранимых данных которой не меняется со временем, поскольку в процессе сохранения новых данных они заменяют более старые данные. Одни и те же ячейки для данных используются циклически.

Что такое СУБД и язык структурированных запросов SQL

Определение

Системы управления базами данных СУБД – специальные средства, включающие определенный язык программирования, предназначены для разработки программ или их систем, работающих с базами данных.

Распространенные СУБД:

  • Oracle Database;
  • MS SQL Server;
  • MySQL (MariaDB);
  • ACCESS в составе профессионального пакета Microsoft Office.

Современные системы обладают большими возможностями, а также способствуют разработке сложных программных комплексов.

Определение

SQL (SQL, Structured Query Language) — язык программирования структурированных запросов, применяемый в качестве эффективного способа сохранения данных, поиска их частей, обновления, извлечения из базы и удаления.

SQL представляет собой ключевой инструмент оптимизации и обслуживания базы данных. Возможности обработки охватывают:

  • команды определения представлений;
  • указания прав доступа, схем отношений;
  • взаимодействие с другими языками программирования;
  • проверку целостности;
  • задание начала и завершения транзакций.

SQL отличается простотой и легкостью в изучении. Его применяют:

  • разработчики баз данных, для обеспечения функциональности приложений;
  • тестировщики, в ручном и автоматическом режиме;
  • администраторы, с целью поддержки рабочих параметров среды.

Пример: слежение за почтовыми отправлениями

Реализация — это сетевая база данных. Но не просто база или система, а разные страны и компании, которые предоставляют услугу, накапливают и обрабатывают информацию.

Это иерархическая база данных на уровне отдельно взятой компании, причем в каждой реализации будет подобная иерархия отношений. Внутри страны есть своя сетевая инфраструктура.

В каждом конкретном применении, когда посетитель веб-ресурса ищет почтовое отправление, срабатывает вся сетевая база данных, которая не была спроектирована как единое целое, но образовалась «сама по себе» вследствие области применения.

Фактор множественности реализаций и вполне конкретный запрос с ответом на него. Подобие по составляющим элементам и функциональности, а также существуют только конкретные способы предоставления почтового отправления для отправки. Есть идентичные по странам способы доставки и пересечения таможни. Результатом становится структура базы данных на местах. Это обуславливает доступность и возможность реализации «автоматического» механизма обмена данными. Но линии связи не всегда работают корректно. Сервера могут становиться и на техобслуживание.

Что такое система управления базами данных (СУБД)?

База данных обычно требует комплексного программного обеспечения базы данных, известного как система управления базами данных (СУБД). СУБД служит интерфейсом между базой данных и ее конечными пользователями или программами, позволяя пользователям извлекать, обновлять и управлять организацией и оптимизацией информации. СУБД также облегчает надзор и контроль над базами данных, позволяя выполнять различные административные операции, такие как мониторинг производительности, настройка, резервное копирование и восстановление.

Некоторые примеры популярных программ для баз данных или СУБД включают MySQL, Microsoft Access, Microsoft SQL Server, FileMaker Pro, Oracle Database и dBASE.

Базы данных в оперативной памяти

Базы данных этого типа могут предоставлять в реальном времени ответ для выбора и вставки определенных записей. Большинство из них в основном хранят данные в ОЗУ, но в некоторых случаях они также предлагают постоянное хранилище на жестких дисках или твердотельных накопителях. Большинство этих баз данных работают с записями «ключ-значение», поэтому значения можно запоминать в формате, ориентированном на документы. Но некоторые базы данных также работают со столбцами и позволяют вторичное индексирование той же таблицы. Использование ОЗУ позволяет обрабатывать данные быстро, но делает их более нестабильными и дорогостоящими.

Достоинства:

  • Быстрое написание
  • Быстрое чтение

Недостатки:

  • Труднодостижимая надёжность
  • Дорогое масштабирование

Примеры: Redis, Tarantool, Apache Ignite.

Проблемы определения

В литературе предлагается множество определений понятия «база данных», отражающих скорее субъективное мнение тех или иных авторов, однако общепризнанная единая формулировка отсутствует.

Определения из международных стандартов и национальных стандартов, разработанных на основе международных:

  • База данных — совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных.
  • База данных — совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, которая поддерживает одну или более областей применения.

Определения из авторитетных монографий:

  • База данных — организованная в соответствии с определёнными правилами и поддерживаемая в памяти компьютера совокупность данных, характеризующая актуальное состояние некоторой предметной области и используемая для удовлетворения информационных потребностей пользователей.
  • База данных — некоторый набор перманентных (постоянно хранимых) данных, используемых прикладными программными системами какого-либо предприятия.
  • База данных — совместно используемый набор логически связанных данных (и описание этих данных), предназначенный для удовлетворения информационных потребностей организации.

В определениях наиболее часто (явно или неявно) присутствуют следующие отличительные :

  1. БД хранится и обрабатывается в вычислительной системе.Таким образом, любые внекомпьютерные хранилища информации (архивы, библиотеки, картотеки и т. п.) базами данных не являются.
  2. Данные в БД логически структурированы (систематизированы) с целью обеспечения возможности их эффективного поиска и обработки в вычислительной системе.Структурированность подразумевает явное выделение составных частей (элементов), связей между ними, а также типизацию элементов и связей, при которой с типом элемента (связи) соотносится определённая семантика и допустимые операции.
  3. БД включает схему, или метаданные, описывающие логическую структуру БД в формальном виде (в соответствии с некоторой метамоделью).В соответствии с ГОСТ Р ИСО МЭК ТО 10032-2007, «постоянные данные в среде базы данных включают в себя схему и базу данных. Схема включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных. База данных включает в себя набор постоянных данных, определённых с помощью схемы. Система управления данными использует определения данных в схеме для обеспечения доступа и управления доступом к данным в базе данных».

Из перечисленных признаков только первый является строгим, а другие допускают различные трактовки и различные степени оценки. Можно лишь установить некоторую степень соответствия требованиям к БД.

В такой ситуации не последнюю роль играет общепринятая практика. В соответствии с ней, например, не называют базами данных файловые архивы, Интернет-порталы или электронные таблицы, несмотря на то, что они в некоторой степени обладают признаками БД. Принято считать, что эта степень в большинстве случаев недостаточна (хотя могут быть исключения).

База данных и СУБД

Есть поня­тие базы дан­ных — это набор дан­ных, орга­ни­зо­ван­ных каким-то спо­со­бом. Напри­мер, если у вас в квар­ти­ре есть гар­де­роб­ная или кла­дов­ка, то всё это поме­ще­ние со всем её содер­жи­мым может счи­тать­ся базой (но не дан­ных, а вещей или банок с огур­ца­ми, что не меня­ет сути).

Есть поня­тие систе­мы управ­ле­ния базой дан­ных (СУБД) — это когда семья села за стол и само­го млад­ше­го отправ­ля­ют в кла­дов­ку за огур­ца­ми, он при­но­сит её и не раз­би­ва­ет по доро­ге. То есть СУБД — это какое-то сред­ство для мани­пу­ля­ции дан­ны­ми в базе, напри­мер программа.

Объяснение заданий 3 ЕГЭ по информатике

3-е задание: «Реляционные базы данных»Уровень сложности — базовый,Требуется использование специализированного программного обеспечения — нет,Максимальный балл — 1,Примерное время выполнения — 3 минуты.
  Проверяемые элементы содержания: Знание о технологии хранения, поиска и сортировки информации в реляционных базах данных

* Некоторые изображения страницы взяты из материалов презентации К. Полякова

Для решения задания 3 ЕГЭ необходимо рассмотреть тему предыдущего урока — (деревья).

Иногда также попадаются задания, которые требуют знаний основ алгебры логики.

Базы данных

  База данных – это хранилище больших объемов данных некоторой предметной области, организованное в определенную структуру, т.е. хранящихся в упорядоченном виде.

Задания ЕГЭ в основном связаны с табличными базами данных, поэтому мы их кратко и рассмотрим.

Данные в табличных БД представлены, соответственно, в виде таблицы.

Строки таблицы носят название записи, а столбцы — поля:

  • Абсолютно все поля должны быть снабжены уникальными именами. В примере: Фамилия, Имя, Адрес, Телефон.
  • Поля имеют различные типы данных, в зависимости от их содержимого (например, символьный, целочисленный, денежный и т.п.).
  • Поля могут быть обязательными для заполнения или нет.
  • Таблица может иметь безграничное количество записей.

Ключевое поле – это поле, которое однозначно определяет запись.
В таблице не может быть двух и более записей с одинаковым значением ключевого поля (ключа).

  • Для выбора ключевого поля берутся какие-либо уникальные данные об объекте: например, номер паспорта человека (второго такого номера ни у кого нет).
  • Если в таблице не предусмотрены такие уникальные поля, то создается так называемый суррогатный ключ — поле (обычно ID или Код) с уникальными номерами — счетчик — для каждой записи в таблице.

Реляционная база данных – это совокупность таблиц, которые связываются между собой (между которыми устанавливаются отношения). Связь создается с помощью числовых кодов (ключевых полей).

Реляционная БД «Магазин»

Положительное в реляционных БД:

  • исключено дублирование информации;
  • если изменяются какие-либо данные, к примеру, адрес фирмы, то достаточно изменить его только в одной таблице — Продавцы;
  • защита от неправильного ввода (или ввода с ошибками): можно выбрать (как бы ввести) только фирму, которая есть в таблице Продавцы;
  • Для удобства осуществления поиска в базе данных часто создается специальная таблица Индексы.
  • Индекс – это специальная таблица, предназначенная для осуществления быстрого поиска в основной таблице по выбранному столбцу.

Последовательность выполнения логических операций в сложных запросах:

сначала выполняются отношения, затем – «И», потом – «ИЛИ». Чтобы изменить порядок выполнения используются скобки.

Индексы

Файловая система

* тема с масками скорее всего не будет представлена на ЕГЭ 2021 года

  • файлы на диске хранятся в так называемых каталогах или папках;
  • каталоги организованы в иерархическую структуру — дерево каталогов;
  • главный каталог диска называется корневым каталогом и обозначается буквой логического диска, за которой следует двоеточие и знак «\» (обратный слэш); например, A:\ – это обозначение корневого каталога диска А.

Дерево каталогов

каждый каталог (кроме корневого) имеет один единственный «родительский» каталог – это тот каталог, внутри которого и располагается данный каталог

полный адрес каталога – это перечисление всех каталогов, в которые нужно войти, чтобы попасть в данный каталог (начиная с корневого каталога диска); например

— полный путь каталога SCHOOL

полный адрес файла состоит из адреса каталога, в котором он находится, символа и имени файла, например

Полный путь файла

маска — выделение группы файлов по их именам; имена этих файлов имеют общие свойства, например, одинаковое расширение
в масках, кроме стандартных символов используются два специальных символа: звездочка «*» и знак вопроса «?»;

  • звездочка «*» обозначает любое количество любых символов, в том числе, может обозначать 0 символов;
  • знак вопроса «?» обозначает ровно один любой символ.

Примеры масок файлов

Сравнение строковых данных

В задачах 3-го типа часто приходится сравнивать строковые значения. Посмотрим, как правильно это делать:

Любой символ всегда больше пустого:

Егифка :

Реляционная модель данных

Основной информационной единицей реляционной БД является таблица. База данных может состоять из одной таблицы (однотабличная БД) или из множества взаимосвязанных таблиц (многотабличная БД).

Структурными составляющими таблицы являются записи и поля.

В одной таблице не должно быть повторяющихся записей.

Для каждой таблицы реляционной БД определяется главный ключ — поле или совокупность полей, однозначно определяющих запись. Иначе говоря, значение главного ключа не должно повторяться в разных записях. Например, в библиотечной базе данных в качестве такого ключа может быть выбран инвентарный номер книги, который не может совпадать у разных книг.

Для строчного представления структуры таблицы применяется следующая форма:

Подчеркиваются поля, составляющие главный ключ.

В теории реляционных баз данных таблица называется отношением. Отношение по-английски — relation. Отсюда происходит название «реляционные базы данных». ИМЯ_ТАБЛИЦЫ в нашем примере — это имя отношения. Примеры отношений:

Каждое поле таблицы имеет определенный тип. С типом связаны два свойства поля:

  1. множество значений, которые оно может принимать;

  2. множество операций, которые над ним можно выполнять.

Поле имеет также формат (длину).

Существуют четыре основных типа для полей БД: символьный, числовой, логический и дата. Для полей таблиц БИБЛИОТЕКА и БОЛЬНИЦА могут быть установлены следующие типы:

В нашем случае поле ПЕРВИЧНЬШ показывает, поступил больной в больницу с данным диагнозом впервые или повторно. Те записи, где значение этого поля равно TRUE (ИСТИНА), относятся к первичным больным, значение FALSE (ЛОЖЬ) отмечает повторных больных. Таким образом, поле логического типа может принимать только два значения.

В таблице БОЛЬНИЦА используется составной ключ — состоящий из двух полей: ПАЛАТА и НОМЕР_МЕСТА. Только их сочетание не повторяется в разных записях (ведь фамилии пациентов могут совпадать).

Понятие базы данных

Построение статической модели важно. Это этап формирования представлений о том, что актуально в области применения и понимания, что может в ней развиваться дальше

На современном уровне знаний динамика — это дискретная последовательность статических моделей, а точнее — серии воплощений представлений в форме доступной для понимания не только автором, то есть вне его сознания, в модели, в графике, в связях, в программных описаниях.

По общему мнению, «база данных — это информационная модель, позволяющая упорядоченно хранить данные о группе объектов, обладающих одинаковым набором свойств. Информация в базах хранится в упорядоченном виде».

Энциклопедическое «знание» обычно гласит: «База данных — представленная в объективной форме совокупность самостоятельных материалов (статей, расчетов, нормативных актов, судебных решений и иных подобных материалов), систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины».

Некоторые авторы по старинке (до того, как компьютеры стали персональными, переносными и карманными) выделяют особую когорту: настольные базы данных к которым относят все, что меньше одного терабайта, а также не имеет отношения к Oracle.

Как автономные технологии улучшают управление базами данных

Самоуправляемые базы данных (автономные) — это мощный тренд будущего — они предлагают интригующую возможность для организаций, которые хотят использовать лучшую доступную технологию баз данных без головной боли, связанной с запуском и эксплуатацией этой технологии.

Автономные базы данных используют облачные технологии и машинное обучение для автоматизации многих рутинных задач, необходимых для управления базами данных, таких как настройка, безопасность, резервное копирование, обновления и другие рутинные задачи управления. Автоматизация этих утомительных задач дает администраторам баз данных возможность выполнять более стратегическую работу. Возможности автономного управления, самозащиты и самовосстановления автономных баз данных готовы революционизировать способы управления и защиты своих данных компаниями, обеспечивая повышение производительности, снижение затрат и повышение безопасности.

Разные базы — разные правила

Внут­ри каж­дой базы дан­ных и её управ­ля­ю­щей систе­мы свои стро­гие правила:

  • какие дан­ные могут хра­нить­ся: текст, циф­ры, фото, видео или всё вместе;
  • какие свой­ства есть у этих дан­ных: дата запи­си, кто запи­сал, кто может прочитать;
  • что делать, если с базой хотят рабо­тать одно­вре­мен­но несколь­ко чело­век: раз­ре­шать толь­ко одно­му или пусть все вме­сте работают.

Рабо­чая ситу­а­ция: допу­стим, вы рабо­та­е­те в бан­ке и откры­ли кар­точ­ку кли­ен­та, что­бы поме­нять ему кре­дит­ный лимит. В этот же момент дру­гой сотруд­ник из сосед­не­го офи­са тоже хочет поме­нять лимит это­му же кли­ен­ту, но уже на дру­гую сум­му. Как база отре­а­ги­ру­ет на такое? Долж­на ли она раз­ре­шать вто­ро­му сотруд­ни­ку откры­вать кар­точ­ку или её нуж­но забло­ки­ро­вать, пока пер­вый не закон­чит? А если она раз­ре­шит открыть кар­точ­ку, то что будет, если двое сотруд­ни­ков напи­шут там раз­ный лимит — какой из них сохра­нять в ито­ге? СУБД зада­ёт эти пра­ви­ла и сле­дит за их выполнением.

Задания для тренировки

Задания со сравнением строковых данных

Рассмотрим одно на первый взгляд простое, но с «ловушкой», задание ЕГЭ:

3_3: Задание 3. Р-01 (kpolyakov.spb.ru):

В таблице представлены несколько записей из базы данных «Расписание»:

Учитель День недели Номер урока Класс
1 Айвазян Г.С. понедельник 3
2 Айвазян Г.С. понедельник 4
3 Айвазян Г.С. вторник 2 10Б
4 Михальчук М.С. вторник 2
5 Пай С.В. вторник 3 10Б
6 Пай С.В. среда 5

Укажите номера записей, которые удовлетворяют условиюНомер_урока > 2 И Класс > ‘8А’

1) 1, 6
2) 2, 6
3) 2, 5, 6
4) 1, 2, 5, 6

С примером решения данного 3 задания ознакомьтесь из видеоурока:

Задания с файлами и масками файлов

* тема с масками скорее всего не будет внесена в ЕГЭ 2021 года

3_5: 3 (ранее 4) задание ЕГЭ или 3 задание ГВЭ 11 класс по информатике 2018 (ФИПИ):

Для групповых операций с файлами используются маски имён файлов.

Символ «?» (вопросительный знак) означает ровно один произвольный символ.
Символ «*» (звёздочка) означает любую последовательность символов произвольной длины, в том числе «*» может задавать и пустую последовательность.
В каталоге находится 8 файлов:

declaration.mpeg
delaware.mov
delete.mix
demo.mp4
distrib.mp2
otdel.mx
prodel.mpeg
sdelka.mp3

Определите, по какой из перечисленных масок из этих 8 файлов будет отобрана указанная группа файлов:

otdel.mx
prodel.mpeg

Варианты ответа:
1) *de?.m*
2) ?de*.m?
3) *de*.mp*
4) de*.mp?

Решение:

Результат: 1

Решение задания 3 ГВЭ по информатике можно посмотреть на видео:

К оглавлению
Далее

Статичность — основание динамики знания

Классификация по модели данных — это статика. Для построения любой модели специалисты обобщают накопленный потенциал, рисуют картинки, связи между данными и определяют (пример, предметная область — обработка текста):

  • текст — это абзац или много абзацев;
  • всякий абзац построен из предложений;
  • не всякий абзац имеет одно предложение;
  • любое предложение может содержать несколько фраз или слов;
  • почти все фразы состоят из слов;
  • слова — это буквы.

Получается, что структура базы данных и спектр, заложенный изначально, противоречивы. Такая модель формальная, она зависима от области применения, всегда является предметом для развития представлений. Но как только картинки нарисованы, а связи построены, выясняется, что слова могут содержать цифры, быть аббревиатурой, названием страны и словом, которое вовсе не имеет значения, а иной абзац может содержать ссылку на веб-ресурс или троеточие. В любом случае, это будет новый смысл.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector