Ipv6 калькулятор подсетей

Использование масок в IP адресации

Для того, чтобы получить тот или иной диапазон IP-адресов предприятиям предлагалось заполнить регистрационную форму, в которой перечислялось текущее число ЭВМ и планируемое увеличение количества вычислительных машин и в итоге предприятию выдавался класс IP – адресов: A, B, C, в зависимости от указанных данных в регистрационной форме.

Данный механизм выдачи диапазонов IP-адресов работал штатно, это было связано с тем, что поначалу в организациях было небольшое количество ЭВМ и соответственно небольшие вычислительные сети. Но в связи с дальнейшим бурным ростом интернета и сетевых технологий описанный подход к распределению IP-адресов стал выдавать сбои, в основном связанные с сетями класса «B». Действительно, организациям, в которых число компьютеров не превышало нескольких сотен (скажем, 500), приходилось регистрировать для себя целую сеть класса «В» (так как класс «С» только для 254 компьютеров, а класс «В» — 65534). Из-за чего доступных сетей класса «В» стало, просто на просто, не хватать, но при этом большие диапазоны IP-адресов пропадали зря.

Традиционная схема деления IP-адреса на номер сети (NetID) и номер узла (HostID) основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски.

Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

  • класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0);
  • класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0);
  • класс С — 11111111. 11111111.11111111. 00000000 (255.255.255.0).

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

Расчет номера сети и номера узла с помощью маски:

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

  • IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101
  • Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» (логическое умножение) на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Существует также короткий вариант записи маски, называемый префиксом или короткой маской. В частности сеть 80.255.147.32 с маской 255.255.255.252, можно записать в виде 80.255.147.32/30, где «/30» указывает на количество двоичных единиц в маске, то есть тридцать бинарных единиц (отсчет ведется слева направо).

Для наглядности в таблице отображается соответствие префикса с маской:

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов. Помимо этого записывать маску в виде префикса значительно короче.

Как изменить маску подсети в Windows 10, из приложения «Настройки»

Один из самых простых способов изменить маску подсети в Windows 10 предлагает приложение «Настройки». Запустите его и перейдите в категорию «Сеть и Интернет».

В разделе «Сеть и Интернет» выберите «Wi-Fi» или «Ethernet» на левой боковой панели, в зависимости от типа сетевого адаптера, для которого вы хотите изменить маску подсети. Затем в правой части окна нажмите или коснитесь соответствующего сетевого подключения.

На странице сетевого подключения прокрутите вниз, пока не дойдете до раздела настроек IP. Затем нажмите кнопку Изменить.

Откроется диалоговое окно «Изменить настройки IP», в котором можно изменить IP-адрес, маску подсети , шлюз и DNS-серверы, используемые выбранным сетевым подключением, как для протокола Интернета версии 4 (TCP / IPv4), так и для протокола Интернета. Версия 6 (TCP/IPv6) . Прокрутите до раздела IPv4 или IPv6, в зависимости от того, какую из них вы хотите настроить для маски новой подсети.

Параметр, определяющий маску подсети, — это длина префикса подсети , которая определяет размер подсети. Например, на приведенном ниже снимке экрана вы можете видеть, что для нашего протокола IPv4 сетевого подключения мы используем «длину префикса подсети», равную 24 ( количество битов в маске 1 ), что означает, что маска подсети 255.255.255.0.

Чтобы изменить маску подсети , необходимо изменить значение поля «Длина префикса подсети». Например, поскольку мы хотели иметь маску подсети 255.255.240.0, нам пришлось установить длину префикса равной 20. Если вам нужна помощь в расчете длины префикса для маски подсети, проверьте этот онлайн- калькулятор подсети IP.

Нажмите или коснитесь Сохранить, и ваша маска подсети будет немедленно изменена.

Принцип работы протокола IPv4

Internet Protocol представляет собой датаграмму, содержит заголовок и полезную нагрузку. Заголовок шифрует адреса источника и назначение информационного пакета, в то время как полезная нагрузка переносит фактические данные. В отличие от сетей прямой коммутации канала, критичных к выходу из строя любого транзитного узла, передача данных с помощью интернет-протокола IPv4 осуществляется пакетным способом. При этом используются разные маршруты передачи ip-пакетов. Допустима ситуация, когда пакеты нижнего уровня достигают конечного узла раньше, чем пакеты верхнего. Некоторые из них теряются во время трансляции. В этом случае посылается повторный запрос, происходит восстановление потерянных фрагментов.

Каждый сетевой узел в модели TCP/IP имеет собственный IP-адрес. Это обеспечивает гарантированную идентификацию устройств при установке соединения и обмене данными. В то же время отличают два уровня распределения адресов по протоколу TCP/ IPv4 – публичные и частные. Первые уникальны для всех без исключения устройств, осуществляющих обмен данными в общемировой WEB-сети. Например, IP-адрес 8.8.8.8 принадлежит компании Google и является адресом публичного DNS-сервера компании. При построении локальной подсети Ethernet идентификация внутренних устройств передачи данных осуществляется путем назначения собственных ip-адресов для каждой единицы оборудования. Коммутация осуществляется через порты роутера (маршрутизатора), каждому присваивается отдельный сетевой адрес с возможным дополнительным разделением на подсети за счет использования маски IP-адреса.

Изначально адресация в IP-сетях систематизировалась по классовому принципу путем деления на большие блоки, что делало ее неудобной в использовании как конечными пользователями, так и провайдерами. Ей на смену пришла бесклассовая схема под названием Classless Inter-Domain Routing (CIDR).

Основной атрибут протокола TCP/IPv4, его адрес, состоит из тридцати двух бит (четырех байт) и записывается четырьмя десятичными числами от 0 до 255, которые разделены точками. Есть альтернативные способы записи (двоичное, десятичное, без точки и т.д.), но они не меняют принципа работы протокола. В стандартном формате запись CIDR производится в виде IP-адреса, следующего за ним символа «/» и числа, обозначающего битовую маску подсети: 13.14.15.0/24. В данной комбинации число 24 означает количество битов в маске подсети, имеющих приоритетное значение. Полный IP-адрес состоит из 32 бит, маской являются старшие 24, соответственно, общее количество возможных адресов в сети составит 32 — 24 = 8 бит (256 IP-адресов). В этом диапазоне описываются сети, состоящие из различного количества доступных адресов путем их вариативной комбинации. Одна большая сеть может быть раздроблена на несколько более мелких подсетей нижнего уровня.

Изучение организации подсетей

Подсети позволяют создавать несколько логических сетей в пределах одной сети класса А, В или С. Если не использовать подсети, то можно будет использовать только одну сеть из сети класса A, B или C, что представляется нереалистичным.

Каждый канал передачи данных в сети должен иметь уникальный идентификатор сети, при этом каждый узел в канале должен быть членом одной и той же сети. Если разбить основную сеть (класс A, B или C) на небольшие подсети, это позволит создать сеть взаимосвязанных подсетей. Каждый канал передачи данных в этой сети будет иметь уникальный идентификатор сети или подсети. Какое-либо устройство или шлюз, соединяющее n сетей/подсетей, имеет n различных IP-адресов — по одному для каждой соединяемой сети/подсети.

 Чтобы организовать подсеть в сети, расширьте обычную маску несколькими битами из части адреса, являющейся идентификатором хоста, для создания идентификатора подсети. Это позволит создать идентификатор подсети. Пусть, например, используется сеть класса C 204.17.5.0, естественная сетевая маска которой равна 255.255.255.0. Подсети можно создать следующим образом:

Расширение маски до значения 255.255.255.224 произошло за счет трех битов (обозначенных «sub») исходной части узла в адресе, которые были использованы для создания подсетей. С помощью этих трех битов можно создать восемь подсетей

Оставшиеся пять битов идентификаторов хоста позволяют каждой подсети содержать до 32 адресов хостов, 30 из которых фактически можно присвоить устройствам, поскольку идентификаторы хостов, состоящие из одних нулей или одних единиц, не разрешены (это очень важно, запомните это). С учетом всех изложенных факторов были созданы следующие подсети

Примечание: Существует два способа обозначения этих масок. Первый: поскольку используется на три бита больше, чем в обычной маске класса C, можно обозначить эти адреса как имеющие 3-битовую маску подсети. Вторым методом обозначения маски 255.255.255.224 является /27, поскольку в маске задано 27 битов. При использовании данного способа одна из этих сетей может быть описана с помощью обозначения префикса или длины. Например, 204.17.5.32/27 обозначает сеть 204.17.5.32 255.255.255.224. Если применяется, записи префикса/длины используются для обозначения маски на протяжении этого документа.

Схема разделения на подсети в этом разделе позволяет создать восемь подсетей, и сеть может выглядеть следующим образом:

Рис. 2

Кроме того, каждый маршрутизатор имеет IP-адрес в каждой подсети, к которой он подключен. Каждая подсеть может поддерживать до 30 адресов узлов.

Из этого можно сделать важный вывод. Чем больше битов используется для маски подсети, тем больше доступно подсетей. Однако чем больше доступно подсетей, тем меньше адресов узлов доступно в каждой подсети. Например, в сети класса C 204.17.5.0 при сетевой маске 255.255.255.224 (/27) можно использовать восемь подсетей, в каждой из которых будет содержаться 32 адреса узлов (30 из которых могут быть назначены устройствам). Если использовать маску 255.255.255.240 (/28), разделение будет следующим:

Поскольку теперь имеются четыре бита для создания подсетей, остаются только четыре бита для адресов узлов. В этом случае можно использовать до 16 подсетей, в каждой из которых может использоваться до 16 адресов узлов (14 из которых могут быть назначены устройствам).

Посмотрите, как можно разделить на подсети сеть класса B. Если используется сеть 172.16.0.0, то естественная маска равна 255.255.0.0 или 172.16.0.0/16. Расширение маски до значения выше 255.255.0.0 означает разделение на подсети. Можно быстро понять, что можно создать гораздо больше подсетей по сравнению с сетью класса C. Если использовать маску 255.255.248.0 (/21), то сколько можно создать подсетей и узлов в каждой подсети?

Вы можете использовать для подсетей пять битов из битов оригинального хоста. Это позволяет получить 32 подсети (25). После использования пяти битов для подсети остаются 11 битов, которые используются для адресов узлов. Это обеспечивает в каждой подсети 2048 адресов хостов (211), 2046 из которых могут быть назначены устройствам.

Примечание: Ранее существовали ограничения на использование подсети 0 (все биты подсети имеют значение 0) и подсети со всеми единицами (все биты подсети имеют значение 1). Некоторые устройства не разрешают использовать эти подсети. Устройства Cisco Systems позволяют использовать эти подсети при настройке команды ip subnet zero.

Расчет подсети:

Вы не указали достаточно информации для подсчета подсети для этой сети; как правило, вы создаете подсети путем перераспределения некоторых битов хоста в виде сетевых битов для каждой подсети. Много раз нет ни одного правильного способа подсети блока … в зависимости от ваших ограничений может существовать несколько допустимых способов подсети блока адресов.

Предположим, что мы разделим 128.42.0.0/21 на 4 подсети, которые должны содержать не менее 100 хостов каждый …

В этом примере мы знаем, что вам нужен хотя бы префикс /25, содержащий 100 хостов; Я выбрал a /24, потому что он попадает на границу октета

Обратите внимание, что сетевой адрес для каждой подсети берет биты хоста из родительского сетевого блока

Поиск требуемой длины маски подсети или сетевой маски:

Как я узнал, что мне нужно, по крайней мере, 25 маску для 100 хостов? Вычислите префикс, обратившись к числу хост-бит, который должен содержать 100 хостов. Нужно 7 хостов, чтобы содержать 100 хостов. Официально это рассчитывается с помощью:

Биты хоста = Журнал 2 (Число хостов) = Журнал 2 (100) = 6.643

Так как адреса IPv4 имеют ширину 32 бита, и мы используем биты хоста (т.е. младшие значащие биты), просто вычитаем 7 из 32 для вычисления минимального префикса подсети для каждой подсети … 32 — 7 = 25.

Ленточный способ разбить 128.42.0.0/21 на четыре равные подсети:

Поскольку нам нужно всего четыре подсети из всего блока 128.42.0.0/21, мы могли бы использовать /23 подсети. Я выбрал /23, потому что нам нужны 4 подсети … т. Е. Добавлены еще два бита в маску сети.

Это равноправный ответ на ограничение, используя /23 подсети из 128.42.0.0/21 …

Протокол IPv6 подсетей [ править | править код ]

Дизайн адресного пространства протокола IPv6 существенно отличается от IPv4. Основной причиной создания подсети в IPv4 является повышение эффективности использования сравнительно небольшого адресного пространства. Но таковой проблемы в IPv6 не стоит.

В документе RFC 4291 для IPv6 на хосты отведено 64 бита. Следовательно, префикс маршрутизации равен /64 (128−64 = 64 старших бит). Хотя, технически возможно использовать меньшие подсети, они являются непрактичными для локальных сетей на основе технологии Ethernet, потому что 64 бита необходимы автоматической настройки адреса. Инженерный совет Интернета рекомендует использовать /127 подсети для соединений точка-точка (состоящих из двух узлов).

IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Для описания того, где проходит эта граница используется сетевой префикс. Он записывается обычно после адреса в виде десятичного числа через слеш, например 10.0.0.0/8 или 192.168.10.123/19 (8 и 19 – префиксы). Префикс обозначает, сколько бит в приведённом адресе хранят информацию о сети. Например, если префикс /24, это означает, что в адресе из 32-х бит 24 бита хранят информацию о сети, а оставшиеся 8 – информацию о хосте.

Предположим, что имеется такая задача: найти широковещательный адрес для адреса 172.20.35.123/20. Запишем адрес в двоичном виде 10101100.00010100.00100011.01111011, как мы помним из определения, чтобы получить широковещательный адрес, надо взять ту часть адреса, где хранится информация о хосте и заполнить её единицами. Так как префикс 20 – отсчитываем первые 20 бит и оставляем их без изменений (виде 10101100.00010100.0010), оставшиеся 12 бит заполняем единицами, так как там хранится хостовая часть адреса (1111.11111111), получится адрес 10101100.00010100.00101111.11111111, в десятичной системе это выглядит как 172.20.47.255.

Назначьте статический IP-адрес в Windows 10

В большинстве случаев IP-адреса для компьютеров или компьютеров автоматически настраиваются на протокол динамической конфигурации хоста (DHCP) соответствующим маршрутизатором. Это полезно, поскольку устройства подключаются к вашей сети мгновенно. Вы избавляете себя от необходимости вручную настраивать IP-адрес для каждого нового устройства. Однако с этим процессом связан один недостаток: время от времени IP-адрес устройства может меняться.

Установка статического IP-адреса может потребоваться, если вы регулярно обмениваетесь файлами, принтером или настраиваете переадресацию портов.

Мы увидим три способа сделать это:

  1. Через панель управления
  2. Через настройки Windows
  3. Использование PowerShell.

1] Установка статического IP-адреса через панель управления

Щелкните правой кнопкой мыши значок сети (или Wi-Fi), видимый на панели задач Windows 10.

В списке из 2-х вариантов выберите последний – Открыть настройки сети и Интернета.

Перейдите в настройки Wi-Fi и немного прокрутите вниз, чтобы найти раздел Связанные настройки . Найдя его, нажмите на ссылку Изменить параметры адаптера .

Мгновенно откроется отдельное окно, которое направит вас в раздел «Сетевые подключения» панели управления.

Щелкните правой кнопкой мыши сетевое соединение, для которого нужно установить статический IP-адрес, и выберите параметр Свойства ‘.

После этого выберите Протокол Интернета версии 4 (TCP/IPv4) на вкладке Сеть и нажмите кнопку Свойства .

Переключите селектор на « Использовать следующий IP-адрес ».

Теперь введите данные в следующие поля, соответствующие настройкам вашей сети.

  1. IP-адрес (найдите его с помощью команды ipconfig /all )
  2. Маска подсети (в домашней сети это 255.255.255.0)
  3. Шлюз по умолчанию (это IP-адрес вашего маршрутизатора.)

В конце не забудьте проверить параметр Проверить настройки при выходе . Это помогает Windows быстро проверить ваш новый IP-адрес и другую соответствующую информацию, чтобы убедиться, что он работает.

Если все выглядит хорошо, нажмите кнопку «ОК» и закройте окно свойств сетевого адаптера.

2] Назначить статический IP-адрес через настройки

Нажмите значок “Настройки” и выберите вкладку Сеть и Интернет .

Выберите Wi-Fi> Текущее соединение, т. Е. Сеть, к которой вы подключены.

Прокрутите страницу вниз до раздела настроек IP и нажмите кнопку Изменить .

Затем, когда появится окно Настройки IP , нажмите стрелку раскрывающегося списка и выберите параметр Вручную .

Включите тумблер IPv4 .

Теперь установите статический IP-адрес. Также установите длину префикса подсети (маска подсети). Если ваша маска подсети 255.255.255.0, то длина префикса подсети в битах равна 24.

После этого настройте адрес шлюза по умолчанию, предпочитаемый адрес DNS и сохраните изменения.

3] Назначение статического IP-адреса через PowerShell

Откройте Powershell от имени администратора и введите следующую команду, чтобы просмотреть текущую конфигурацию сети:

 Get-NetIPConfiguration 

После этого запишите следующую информацию:

  1. InterfaceIndex
  2. IPv4-адрес
  3. IPv4DefaultGateway
  4. DNSServer.

После этого введите следующую команду, чтобы установить статический IP-адрес, и нажмите Enter.

 New-NetIPAddress -InterfaceIndex 15 -IPAddress 192.168.29.34 -PrefixLength 24 -DefaultGateway 192.168.29.1. 

Теперь измените DefaultGateway на адрес шлюза по умолчанию в вашей сети. Обязательно замените номер InterfaceIndex на номер, соответствующий вашему адаптеру, а IPAddress – на IP-адрес, который вы хотите назначить устройству.

Когда закончите, введите следующую команду, чтобы назначить адрес DNS-сервера и нажмите Enter.

 Set-DnsClientServerAddress -InterfaceIndex 4 -ServerAddresses 10.1.2.1 

Сохраните изменения и выйдите.

Надеюсь, это поможет.

Настройка статических адресов IPv4 и IPv6

Каждый установленный сетевой адаптер может быть подключен к одной локальной сети. Подключения создаются автоматически. Для настройки ІР-адреса конкретного подключения выполните следующие действия:

  1. Щелкните Пуск (Start) и Сеть (Network). В консоли Сеть (Network) щелкните кнопку Центр управления сетями и общим доступом (Network And Sharing Center) на панели инструментов.
  2. В окне Центр управления сетями и общим доступом (Network And Sharing Center) щелкните ссылку Управление сетевыми подключениями (Manage Network Connections). В окне Сетевые подключения (Network Connections) щелкните правой кнопкой нужное подключение и выберите команду Свойства (Properties).
  3. Дважды щелкните протокол, соответствующий типу настраиваемого IP-адреса – TCP/IPv6 или TCP/IPv4.
  4. Настройте адрес IPv6:

    • Установите переключатель Использовать следующий IPv6-адрес (Use The Following IPv6 Address) и введите IPv6-адрес в поле IPv6-адрес (IPv6 Address). Этот IPv6-адрес должен быть уникален в пределах сети.
    • Нажмите на клавишу Tab. Поле Длина префикса сети (Subnet Prefix Length) обеспечивает нормальный доступ компьютера к сети. Система вставляет в поле Длина префикса сети (Subnet Prefix Length) стандартное значение префикса. Если в сети не используются подсети переменной длины, стандартное значение должно сработать. В противном случае вам придется привести значение в соответствии с вашей сетью.
  5. Настройте адрес IPv4:

    • Установите переключатель Использовать следующий IP-адрес (Use The Following IP Address) и введите IPv4-aдpec в поле IP-адрес (IP Address). Назначаемый компьютеру IPv4-адрес должен быть уникален в пределах сети.
    • Нажмите на клавишу Tab. Поле Маска подсети (Subnet Mask) обеспечивает нормальный доступ компьютера к сети. Система сама вставляет в поле значение маски по умолчанию, которое подходит в большинстве ситуаций. При необходимости задайте другое значение, соответствующее вашей сети.
  6. Если компьютеру необходим выход в другие ТСР/IP-сети, в Интернет или другие подсети, укажите IP-адрес шлюза по умолчанию в поле Основной шлюз (Default Gateway).
  7. Для разрешения доменных имен требуется DNS. В соответствующие поля введите ІР-адреса основного и альтернативного DNS-серверов.
  8. Завершив настройку, щелкните ОК и Закрыть (Close). Повторите процесс для других сетевых адаптеров и IP-протоколов, которые требуется настроить.
  9. При необходимости настройте WINS для IPv4-адресов.

Примеры расчета сетей

Деление сети осуществляется присвоением битов из порции адреса хоста к порции адреса сети. Тем самым мы увеличиваем возможное количество подсетей, но уменьшаем количество хостов в подсетях. Чтобы узнать, сколько получается подсетей из присвоенных битов надо воспользоваться cisco формулой расчета сетей: 2n, где n является количеством присвоенных бит.

Пример расчета сети на 2 подсети.

У нас есть адрес сети 192.168.1.0/24, нам надо разделить имеющуюся сеть на 2 подсети. Попробуем забрать от порции хоста 1 бит и воспользоваться формулой: 21=2, это значит, что если мы заберём один бит от части хоста, то мы получим 2 подсети. Присвоение одного бита из порции хоста увеличит префикс на один бит: /25. Теперь надо выписать 2 одинаковых IP адреса сети в двоичном виде изменив только присвоенный бит (у первой подсети присвоенный бит будет равен 0, а у второй подсети = 1). Захваченный бит я выделю более жирным шрифтом красного цвета.

2 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):

1) 11000000.10101000.00000001.0000000
2) 11000000.10101000.00000001.10000000

Теперь запишем рядом с двоичным видом десятичный, и добавим новый префикс. Красным пометил порцию подсети, а синим – порцию хоста.

1) 11000000.10101000.00000001.00000000 = 192.168.1.0/25
2) 11000000.10101000.00000001.10000000 = 192.168.1.128/25

Всё, сеть разделена на 2 подсети. Как мы видим выше, порция хоста теперь составляет 7 бит.

Чтобы высчитать, сколько адресов хостов можно получить используя 7 бит, необходимо воспользоваться cisco формулой расчёта хостов: 2n-2, где n = количество бит в порции хоста.

27 — 2 = 126 хостов. В начале статьи было сказано, что вычитаемая цифра 2 является двумя адресами, которые нельзя присвоить хосту: адрес сети и широковещательный адрес.

Адрес сети, это когда в порции хоста все нули, а широковещательный адрес, это когда в порции хоста все единицы. Выпишем эти адреса для каждой подсети в двоичном и десятичном виде:

11000000.10101000.00000001.00000000 = 192.168.1.0/25 (адрес сети первой подсети)

11000000.10101000.00000001.01111111 = 192.168.1.127/25 (широковещательный адрес первой подсети)

11000000.10101000.00000001.10000000 = 192.168.1.128/25 (адрес сети второй подсети)

11000000.10101000.00000001.11111111 = 192.168.1.255/25 (широковещательный адрес второй подсети)

Пример расчета сети на 4 подсети.

Этот пример делается абсолютно по тому же алгоритму, что и предыдущий, поэтому я запишу текст немного короче. Адрес я буду использовать тот же, чтобы вы видели отличия. Если нужны подробности, пишите на почту eaneav@gmail.com.

У нас есть адрес сети 192.168.1.0/24, надо разделить сеть на 4 подсети. Высчитываем по формуле, сколько нам надо занять бит от хоста: 22 = 4. Префикс изменяется на /26.

4 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):

1) 11000000.10101000.00000001.00000000
2) 11000000.10101000.00000001.01000000
3) 11000000.10101000.00000001.10000000
4) 11000000.10101000.00000001.11000000

Красным пометил порцию подсети, а синим – порцию хоста:

1) 11000000.10101000.00000001.00000000 = 192.168.1.0/26
2) 11000000.10101000.00000001.01000000 = 192.168.1.64/26
3) 11000000.10101000.00000001.10000000 = 192.168.1.128/26
4) 11000000.10101000.00000001.11000000 = 192.168.1.192/26

Всё, сеть разделена на 4 подсети. Порция хоста теперь составляет 6 бит.

26 — 2 = 62 хостов.

11000000.10101000.00000001.00000000 = 192.168.1.0/26 (адрес сети первой подсети)

11000000.10101000.00000001.00111111 = 192.168.1.63/26 (широковещательный адрес первой подсети)

11000000.10101000.00000001.01000000 = 192.168.1.64/26 (адрес сети второй подсети)

11000000.10101000.00000001.01111111 = 192.168.1.127/26 (широковещательный адрес второй подсети)

11000000.10101000.00000001.10000000 = 192.168.1.128/26 (адрес сети третьей подсети)

11000000.10101000.00000001.10111111 = 192.168.1.191/26 (широковещательный адрес третьей подсети)

11000000.10101000.00000001.11000000 = 192.168.1.192/26 (адрес сети четвёртой подсети)

11000000.10101000.00000001.11111111 = 192.168.1.255/26 (широковещательный адрес четвёртой подсети)

Вступление

Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6. Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании. Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства. Давайте детальнее рассмотрим, что такое сетевой префикс, и как он поможет расшифровать IP-адрес.

Любое устройство гарантированно получает свой уникальный идентификатор

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector